

RAPTOR: a lightweight transport model for open-loop optimization and real-time simulation

Federico Felici

O. Sauter, S. Coda, B.P. Duval, T.P. Goodman J-M. Moret and the TCV team

CRPP-EPFL, Association Euratom-Suisse, CH-1015 Lausanne Switzerland

ITM-ISM working session 05.07.2011

federico.felici@epfl.ch

05.07.2011

Using transport models for profile control CRPP

Real-time control [Moreau2008, Ferron2006]

Profile evolution modeling [CRONOS/ASTRA/PTRANSP]

Using transport models for profile control

Using transport models for profile control

- **RAPTOR RA**pid **P**lasma **T**ransport simulat**OR**
- Fast 1-D transport code for real-time implementation and fast optimization
 - Evolves profiles of poloidal flux $\psi(\rho,t)$, and electron temperature $T_e(\rho,t)$
 - Fixed flux surface shapes from pre-calculated MHD equilibrium
 - Neoclassical resistivity, bootstrap current [Sauter PoP 1999,2002]
 - q, shear profile dependent ad-hoc transport model χ_e (similar to [Polevoi2002,Garcia2010])
 - Parametrized heating / current drive sources
- Includes nonlinear profile coupling, crucial for hybrid/advanced scenarios
- Similar to [Witrant, PPCF 2007]
 - But additionally solves full T_e profile dynamics
 - Different numerics (Finite Elements, implicit solver)

- Real-time simulation
 - Evolve plasma numerically, while it is physically evolving in the tokamak
 - Use available diagnostics as constraints
 - In control engineering terms: a Nonlinear, dynamic model-based state observer
 - Model-reality mismatch: disturbance estimation or parameter adaptation

- Continuous function on (ρ,t)
- Different diagnostics give information at different spatial and temporal points
 - Today: profile information (e.g. for control) based exclusively on these points

- Continuous function on (ρ,t)
- Different diagnostics give information at different spatial and temporal points
 - Today: profile information (e.g. for control) based exclusively on these points
- Real-time simulation of physical evolution done on independent numerical grid
 - Grid size determined by underlying physics, available CPU power

- Continuous function on (ρ,t)
- Different diagnostics give information at different spatial and temporal points
 - Today: profile information (e.g. for control) based exclusively on these points
- Real-time simulation of physical evolution done on independent numerical grid
 - Grid size determined by underlying physics, available CPU power

- Continuous function on (ρ,t)
- Different diagnostics give information at different spatial and temporal points
 - Today: profile information (e.g. for control) based exclusively on these points
- Real-time simulation of physical evolution done on independent numerical grid
 - Grid size determined by underlying physics, available CPU power
 - Diagnostics provide information to improve state estimation when available

- Continuous function on (ρ,t)
- Different diagnostics give information at different spatial and temporal points
 - Today: profile information (e.g. for control) based exclusively on these points
- Real-time simulation of physical evolution done on independent numerical grid
 - Grid size determined by underlying physics, available CPU power
 - Diagnostics provide information to improve state estimation when available

- Poloidal flux diffusion equation (1-D)
 - Solved assuming fixed flux surface distribution on (R,Z)

$$\sigma_{||} \frac{\partial \psi}{\partial t} = \frac{R_0 J^2}{\mu_0 \rho} \frac{\partial}{\partial \rho} \left(\frac{G_2}{J} \frac{\partial \psi}{\partial \rho} \right) - \frac{V'}{2\pi \rho} (j_{BS} + j_{CD})$$
$$\rho = \sqrt{\frac{\Phi}{\pi B_0}}, \quad J = \frac{R B_\phi}{R_0 B_0}, \quad V' = \frac{\partial V}{\partial \rho}, \quad G_2 = \frac{V'}{4\pi^2} \left\langle \frac{(\nabla \rho)^2}{R^2} \right\rangle$$

[Hinton&Hazeltine Rev. Mod. Phys 1976], [Pereverzev IPP rep 1991]

Sources

$$j_{BS} = -\frac{2\pi J(\psi)}{B_0 R_{pe}} \frac{\partial \rho}{\partial \psi} \left[\mathcal{L}_{31} \frac{\partial n_e}{\partial \rho} T_e + (\mathcal{L}_{31} + R_{pe} \mathcal{L}_{32} + (1 - R_{pe}) \alpha \mathcal{L}_{34}) \frac{\partial T_e}{\partial \rho} n_e \right]$$

$$j_{ECCD}(\rho, t) = \underbrace{c_{exp} e^{-\rho^2/0.5^2}}_{\eta_{EC}} \frac{T_e}{n_e} \exp\left\{ \frac{(\rho - \rho_{dep})^2}{w_{cd}^2} \right\} P_{gyro}(t)$$

$$\mathsf{E}$$

Bootstrap current: Neoclassical physics [Sauter PoP 1999]

Gaussian shape for EC current deposition

• Need inputs: I_p , $T_e(\rho)$, $n_e(\rho)$ at each time step: from RT diagnostics

Pilot implementation on TCV demonstrates that real-time simulation is certainly feasible on larger tokamaks

- o Current density profile: hard to measure, physics well understood
 - Solve flux diffusion equation with kinetic profiles from real-time diagnostics
 - Flux profile simulated on TCV every 1ms (<150ms current redistribution time)
 - Results comparable to off-line interpretative modeling (ASTRA)

Experiments confirm hat RT-RAPTOR gives results similar to off-line estimates

Mai A

Closing the loop: Simultaneous feedback control of I_i and T_{e0}

Tokamak operational space Which route to take?

e.g. $\sim I_p$

- Given the initial plasma profiles, what input trajectories should I use to:
 - Minimize a **cost function** depending on the *final* plasma state
 - While satisfying constraints on the state
 - And satisfying constraints on the actuators

- Given the initial plasma profiles, what input trajectories should I use to:
 - Minimize a **cost function** depending on the *final* plasma state
 - While satisfying constraints on the state
 - And satisfying constraints on the actuators

- Given the initial plasma profiles, what input trajectories should I use to:
 - Minimize a **cost function** depending on the *final* plasma state
 - While satisfying constraints on the state
 - And satisfying constraints on the actuators

• Need to do many simulations

- Given the initial plasma profiles, what input trajectories should I use to:
 - Minimize a **cost function** depending on the *final* plasma state
 - While satisfying constraints on the state
 - And satisfying constraints on the actuators

- Need to do many simulations
- Predictive-RAPTOR transport code
 - Returns all gradients of state trajectories w.r.t input trajectory parameters
 - Very fast (one time step: ~10ms, one simulation: ~1 second, full optimization ~1 minute)

- Noncircular, axisymmetric, fixed toroidal flux surface shape
- 1D, (flux surface averaged) diffusion of poloidal flux

$$\sigma_{||}\frac{\partial\psi}{\partial t} = \frac{R_0 J^2}{\mu_0 \rho} \frac{\partial}{\partial \rho} \left(\frac{G_2}{J} \frac{\partial\psi}{\partial \rho}\right) - \frac{V'}{2\pi\rho} (j_{BS} + j_{ext})$$

Flux surface averaged electron temperature diffusion

- Neoclassical conductivity ~Te^{3/2}
- Bootstrap current ~ ∇T_e
- Current drive sources as sums of gaussians
- Boundary condition through total Ip

- Fixed ion and density profile
- Heat sources as sums of gaussians

 $V'\frac{\partial}{\partial t}[n_e T_e] = \frac{\partial}{\partial \rho}n_e \chi_e \frac{\partial T_e}{\partial \rho} + V'P_e$

• Ad-hoc model for thermal diffusivity

 $\left|\chi_e = \chi_{neo} + c_{ano}\rho q F(s) + \chi_{central} e^{-\rho^2/0.1^2}\right|$

Fixed ion and density profile

• Heat sources as sums of gaussians

Ad-hoc model for thermal diffusivity

 $\chi_e = \chi_{neo} + c_{ano}\rho q F(s) + \chi_{central} e^{-\rho^2/0.1^2}$

Predictive-RAPTOR equations

- Noncircular, axisymmetric, fixed toroidal flux surface shape
- o 1D, (flux surface averaged) diffusion of poloidal flux

$$\sigma_{||}\frac{\partial\psi}{\partial t} = \frac{R_0 J^2}{\mu_0 \rho} \frac{\partial}{\partial\rho} \left(\frac{G_2}{J} \frac{\partial\psi}{\partial\rho}\right) - \frac{V'}{2\pi\rho} (j_{BS} + j_{ext})$$

- Neoclassical conductivity ~T_e^{3/2}
- Bootstrap current ~ ∇T_e
- Current drive sources as sums of gaussians
- Boundary condition through total I_p

- Compared to other transport models (e.g. CRONOS/ASTRA):
 - •No self-consistent equilibrium, fixed bnd
 - •No consistent ray tracing/NBI modules
 - •No ion or density simulation
 - •No complex transport models (eg GLF23)

• Flux surface averaged electron temperature diffusion

- Gradients computed using forwards sensitivity method
 - State sensitivities: dx/dp at all times.
 - Used to quickly evaluate cost function gradient dJ/dp = dJ/dxf dxf/dp
 - Linearization of the profile dynamics around the profile trajectory
 - Useful for control

• Solution: Sequential Quadratic Programming (SQP)

- Iteratively solve local approximation to nonlinear optimization problem:
 - Quadratic cost function + linear constraints
 - Gradients *dJ/dp* and *dC/dp*, are computed from **state sensitivities**
 - Quasi-newton method for Hessian
 - Avoid finite-difference evaluation of gradients (expensive!)
 - Use version implemented in Matlab, called via fmincon

- Off axis ECCD at 0=0.3
- Cost function terms;
 - J₃₅ Stationary profiles at final time (flat V_{100P}).
 J_{ΨOH} Flux consumption
 TotaГJ = J₃₅ + V_{ΨOH}JΨOH
- 2 parameters: Ip and PEC at t=50ms

05.07.2011 - F. Felici - ITM-ISM working group

A first example: 2 parameters

A first example: 2 parameters

A first example: 2 parameters

Results for ramp up to 'hybrid' q profile

CRPP

What we can learn from cost & constraint gradients ederate be LAUSAN

- Similar scenario, only
 U_{pl,edge}>0 constraint
- Cost function gradient
 - Move in this direction to decrease cost
- Constraint gradient
 - Move in this direction to violate constraint
- Input arc classification
 (i) Input constrained
 (ii) State constrained
 (iii) Unconstrained
- Consequences for feedback control design

- New lightweight transport code RAPTOR for physics-based profile control
- Real-time simulation of q profiles demonstrated on TCV
 - q profiles every 1ms, without internal diagnostics!
 - Used for feedback control of T_e and L_i
 - Outlook
 - Closed loop control of q profile in advanced scenarios
 - Integrate with RT current density diagnostics
 - Couple to RT-equilibrium solver
- Optimization of actuator trajectories
 - Actuator trajectories tailored to get stationary profiles at start of flat-top.
 - Outlook
 - Further scenario optimization studies (advanced scenarios, ramp-down)
 - Add more physics (T_i, density, alpha profiles)
 - Real-time prediction
- Application to other tokamaks envisaged collaborations are welcome

Advanced scenario experiments are known to benefit from early Ip overshoot

Figure 2. Two discharges that reach high β in ASDEX. (a) Pulse 14521 and (b) pulse 14517.

[Sips et al, Progress towards steady-state advanced scenarios in ASDEX Upgrade, PPCF 2002]

• Simulation parameters

CRPP

- Equilibrium: existing shot
- Transport model parameters: hand-picked to get reasonable profiles
- Ramp-up scenario
 - 80 to 200kA in 25ms
 - Sudden P_{EC} switch-on
- Some features of the profile evolution:
 - ~zero central shear profile
 - Transient, non-flat Upl profile
 - Improved confinement at low magnetic shear
 - Low j_{BS} contribution
 - Back EMF at jcd location

Evolution of perturbed trajectories

- Parameter: P_{EC} after 0.25
 - 1.2MW
 - 1MW (nominal)
 - 0.8MW
- Perturbed trajectories computed without running new simulation
 - Small error w.r.t. nonlinear case

• Cost function: reflects desired properties of final profiles

- Weighted sum of several profile terms
 - 1/safety factor $||1/q(t_f)-1/q_{,ref}||^2$ (e.g. for ITBs)
 - Loop voltage (e.g. for non-inductive scenarios) $||U_{pl}(t_f)-U_{pl,ref}||^2$
 - Loop voltage derivative (for steady-state) $||dU_{pl}/d\rho||^2$
 - Flux consumption (for longer pulse) $||\Delta \Psi_{OH}||^2$
 - Temperature (e.g. for high beta) $||T_e(t_f)-T_{e,ref}||^2$

$$J = \nu_{\iota} J_{\iota} + \nu_{U_{pl}} J_{U_{pl}} + \nu_{ss} J_{ss} + \nu_{OH} J_{OH} + \nu_{T_e} J_{T_e}$$

- Constraints: impose limitations on actuator and plasma evolution
 - Constrain current ramp rate, maximum/minimum auxiliary power...
 - Constrain minimum q: q>q_{min} to avoid (e.g.) sawteeth
 - Constrain edge loop voltage: V_{loop}>0 to avoid negative edge currents
 - Other constraints possible: shear, j₀, ...

• Parametrize u(t) with a finite number of parameters *p* using basis functions *P(t)*

$$u_i(t) = \sum_{j}^{n_i} P_{ij}(t) p_{i,j}$$

• Given state x_k, inputs u_k at time step k,

• PDE(ρ,t) -> discretize -> Nonlinear ODE at each time step:

$$ilde{f}(x_{k+1},x_k,u_k) = ilde{f}_k = 0 \ orall \ k$$

• Take steps in Newton descent direction *d*

$$\mathcal{J}_{k+1}^k d = \tilde{f}_k,$$

Need Jacobian

$$\mathcal{J}_{k+1}^k = \frac{\partial \tilde{f}_k}{\partial x_{k+1}}$$

- Obtained from analytical expression for all the derivatives (copious application of chain rule)
- Iterate until residual f_k < tolerance
- Go to next time step
- Store Jacobians at each time step

Parameter sensitivity of profile evolution

- Time evolution depends on mode parameters
 - One example: a transport model parameter
 - Another example: a parameter defining the input trajectory

 $ilde{f}(x_{k+1},x_k,u_k) = ilde{f}_k = 0 \ orall \ k$

• Differentiating with respect to parameter *p*, we get the sensitivity equation

$$0 = \frac{\mathrm{d}\tilde{f}_k}{\mathrm{d}p} = \frac{\partial\tilde{f}_k}{\partial x_{k+1}}\frac{\partial x_{k+1}}{\partial p} + \frac{\partial\tilde{f}_k}{\partial x_k}\frac{\partial x_k}{\partial p} + \frac{\partial\tilde{f}_k}{\partial u_k}\frac{\partial u_k}{\partial p} + \frac{\partial\tilde{f}_k}{\partial p}$$

- Linear ODE for *dx_k/dp*, solve while evolving nonlinear PDE: *Forward sensitivity analysis*
- Jacobians df_k/dx_k , df_k/dx_{k+1} are known from Newton iterations
- Computational cost proportional to p

• dx_k/dp gives the linearization of the state trajectories in the parameter space

$$T_e(\rho, t)|_{p=p_0+\delta p} \approx T_e(\rho, t)_{p_0} + \frac{\partial T_e}{\partial x} \frac{\partial x}{\partial p} \delta p$$

